Directed cycles and related structures in random graphs: I- Static properties
نویسندگان
چکیده
We study directed random graphs (random graphs whose edges are directed), and present new results on the so-called strong components of those graphs. We provide analytic and simulation results on two special classes of strong component, called cycle components and knots, which are important in random networks that represent certain computational systems.
منابع مشابه
Directed cycles and related structures in random graphs: II—Dynamic properties
We study directed random graphs (random graphs whose edges are directed) as they evolve in discrete time by the addition of nodes and edges. For two distinct evolution strategies, one that forces the graph to a condition of near acyclicity at all times and another that allows the appearance of nontrivial directed cycles, we provide analytic and simulation results related to the distributions of...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملSigned total Roman k-domination in directed graphs
Let $D$ be a finite and simple digraph with vertex set $V(D)$.A signed total Roman $k$-dominating function (STR$k$DF) on$D$ is a function $f:V(D)rightarrow{-1, 1, 2}$ satisfying the conditionsthat (i) $sum_{xin N^{-}(v)}f(x)ge k$ for each$vin V(D)$, where $N^{-}(v)$ consists of all vertices of $D$ fromwhich arcs go into $v$, and (ii) every vertex $u$ for which$f(u)=-1$ has a...
متن کاملAlternative Markov and Causal Properties for Acyclic Directed Mixed Graphs
We extend Andersson-Madigan-Perlman chain graphs by (i) relaxing the semidirected acyclity constraint so that only directed cycles are forbidden, and (ii) allowing up to two edges between any pair of nodes. We introduce global, and ordered local and pairwise Markov properties for the new models. We show the equivalence of these properties for strictly positive probability distributions. We also...
متن کامل